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Abstract. The microscopic model of Ullersma for a harmonic oscillator in contact with a 
thermal reservoir is quantised in the framework of Nelson’s stochastic mechanics. Eliminat- 
ing the degrees of freedom of the thermal reservoir the stochastic process of the quantum 
Brownian oscillator is obtained as the sum of the thermal contribution and the quantum 
(zero-temperature) contribution. The properties of the quantum fluctuations are studied 
in detail and the equation of motion is derived, obtaining the first example of a non- 
Markovian Nelson process. 

1. Introduction 

The quantum treatment of a particle in contact with a thermal reservoir is an old 
problem (for a review see Dekker 1981) which is still the object of active research, 
due to the renewed interest originated in the pioneering work of Caldeira and Leggett 
(1983) on dissipative quantum tunnelling. Broadly speaking, in that problem one is 
interested in the interplay of quantum and thermal fluctuations in the decay of a 
metastable state. However, novel and interesting features have also been discovered 
in the simpler case of a harmonic oscillator or even for a free particle in a thermal 
reservoir (for a review and references see Grabert et a1 (1988)) at low temperature 
when the effect of the environment cannot be treated perturbatively. 

Stimulated by these results, which have uncovered new richness and complexity 
in the physics of a quantum system interacting with the environment, in this paper we 
continue the study of the quantum Brownian oscillator from the point of view of 
Nelson’s stochastic quantisation (for a review of previous work see Ruggiero and 
Zannetti (1985a)). 

In the framework of stochastic mechanics (Nelson 1984, Guerra 1981) pure states 
of isolated quantum systems, i.e. wavefunctions, are associated with Markovian random 
processes. In this case randomness is intrinsic, since it is due only to the quantum 
nature of the system, and does not involve energy dissipation or irreversible phenomena. 

In a previous series of papers Ruggiero and Zannetti (1985a) have extended the 
quantisation method of Nelson to systems interacting with a thermal environment. In 
that case the states of the system are still described by random processes, with the 

5 Also affiliated to: lnstituto Nazionale Fisica Nucleare, Sezione di Napoli, Napoli, Italy. 
1 1  Also affiliated to: Centro Interuniversitario Struttura della Materia (Consiglio Nazionale delle Richerche). 

0305-44:0/89/132521+ 12$02.50 0 1989 IOP Publishing Ltd 2521 



2522 S De Martino et a1 

important difference that randomness is partly of intrinsic quantum origin, as for pure 
states, and partly is due to the elimination of the degrees of freedom of the environment, 
as in the classical treatment of Brownian motion. This structure was clearly demon- 
strated in an effort (Ruggiero and Zannetti 1983) to derive exactly the process of the 
Brownian oscillator on the basis of the microscopic model solved by Ford et a1 (1965). 
By quantising this model according to stochastic quantisation and then eliminating 
the degrees of freedom of the thermal bath, a random process was obtained as the 
sum of two contributions reflecting, respectively, thermal and quantum fluctuations. 
While the physical meaning of the thermal contribution is clear and carries the energy 
dissipation, which necessarily arises in the interaction with the infinitely many degrees 
of freedom of the reservoir, the quantum contribution is much more subtle. In fact, 
at zero temperature a novel situation arises. The large system as a whole (oscillator 
and thermal reservoir) is in the ground state where there are only zero-point fluctuations. 
Then, when the degrees of freedom of the reservoir are eliminated, while keeping the 
temperature zero, no dissipative processes can arise. Therefore in this case one expects 
to find a random process which, although radically different from those associated 
with pure quantum states (since in this case there is no wavefunction), still exhibits 
properties which are characteristic of the quantum fluctuations in pure states, such as 
energy conservation. In order to investigate in detail those properties in this paper we 
analyse the microscopic model of Ullersma (1966) for an oscillator in interaction with 
a heat bath according to the method of stochastic quantisation. 

The paper is organised as follows. In § 2 the model is introduced and the main 
features of the exact solution which will be needed in the following are illustrated. 
Next, in § 3 Nelson's stochastic mechanics is summarised both for pure states and for 
states described by density matrices. Finally in § 4 the elimination of the degrees of 
freedom of the thermal reservoir is carried out, yielding the exact stochastic process 
executed by the Brownian oscillator at arbitrary temperature. The zero-temperature 
limit is analysed in detail and the conclusions are presented. 

2. Microscopic model 

In this section we summarise the main features of the microscopic model which are 
of interest in the following. We consider a system of N + 1 particles with a quadratic 
Hamiltonian 

H = t ( p . p ) + $ q .  vq (2.1) 

where q = (qo ,  q l , .  . . , q n )  and p = ( p o ,  p l , .  . . , p . )  are the position and momentum 
vectors for the entire system. In the model of Ullersma (1966) the interaction term is 
given by 

which describes a harmonic oscillator (central or Brownian) with frequency wo,  linearly 
coupled with a thermal bath constituted by the ensemble of the remaining N oscillators, 
with frequencies w, . 

This model can be solved exactly in two different, but clearly equivalent, ways. In 
the original solution of Ullersma (Ullersma 1966, Riseborough et a1 1985, Haake and 
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Reibold 1985) the Hamiltonian is diagonalised by introducing the eigenvectors of V :  

vx, = Z’,X”. (2.3) 
Performing the canonical transformation 

where X , ,  are the components of X,, the normal-mode Hamiltonian is obtained: 

H = c $( p : +  Ztq:). (2.5) 

The N + 1 eigenfrequencies z, are the positive zeros of the function 
2 E ;  

g ( z ) = z  - w ; -  
, = I Z  - w ,  

and the matrix elements X,, are given by 

The eigenvalues in (2.3) need to be positive for stability and this requires the 
following condition on the parameters of the model: 

Solving the initial-value problem for the normal modes and inserting into (2.4), 
the exact solution for the central oscillator is found: 

po( t )  = 4 d t )  (2.10) 

with 

A , ( ? )  =I Xo,Xn,z,’ sin(z,t) 
Y 

(2.11) 

(2.12) 

and where { q n ( 0 ) , p n ( O ) }  is a set of initial conditions. 
Alternatively (Eckhardt 1987, Ford and Kac 1987), rather than going to the normal 

modes, the particular structure of the interaction matrix (2.2) yields canonical equations 
of motion of the following form: 

4 0  = Po 
(2.13) 

(2.14) 

Solving (2.14) and inserting into (2.13) the degrees of freedom of the thermal 
reservoir are eliminated and one obtains an equation of motion for the central oscillator 



2524 S De Martino et a1 

alone: 

r r  (2.15) 

where 
N E :  

B ( t )  = c ,cos(w,t) 
n = l  w ,  

(2.16) 

and 
N 

F ( t )  = - c [ w f l ( O )  cos(wflt)+(pfl(O)/wfl) sin(wflt)l. (2.17) 

The set of equations (2.10)-(2.12) and (2.15)-(2.17) are equivalent. The quantum 
solution is obtained from the above formulae, regarding q , ( t )  and p , ( t )  as operators 
in the Heisenberg representation. Considering an initial condition specified by thermal 
equilibrium for the entire system, namely with expectations for the initial values given 
by the canonical distribution 

n = l  

1 
= S,, - h coth(phw,/2) (2.18) 

2% 
(qn(O)pm(O)) - ( p m ( O ) q n ( O ) )  =fib S n m  (2.19) 

(2.15) becomes the quantum Langevin equation, where the operator-valued random 
force F (  t )  has the expectations 

( F ( t ) )  = 0 (2.20) 
N 2  

I ( F ( O ) F ( t ) + F ( t ) F ( O ) ) =  G E ( w , ,  T )  COS(W,t) 
n = l  w ,  

(2.21) 

with 

E ( w , ,  T )=;hw, ,  coth($Pho,). (2.22) 
In the following we will need the time-ordered correlation function 

W t )  = (T[qo(t)qo(O)l) (2.23) 
where T is the time-ordering operator, given by 

w( t )=  W,(t)+ W Q ( t )  (2.24) 
with 

exp( -izt) 
2 vi 

(2.25) 

(2.26) 

(2.27) 

and where the contour of integration encircles the positive zeros of g(z) .  
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The latter contribution describes the correlations of the zero-point fluctuations, 
while W,( t )  contains the contribution of the thermal fluctuations and vanishes at zero 
temperature ( p  + CO). 

So far we have considered a bath of N oscillators, with N finite, and the results 
obtained are exact. Next, in order to introduce irreversibility effects, the limit of a 
large number of oscillators is considered by introducing a continuum of frequencies 
characterised by the spectral strength function 

(2.28) 

Replacing the sum by an integral the positivity condition (2.9) and (2.16) becomes 

and 

B( t )  = d o  cos(wt) lom w 

(2.29) 

(2.30) 

From (2.29) we see that the positivity condition can be satisfied only if w - ’ y ( w )  
vanishes for w large. Following Ullersma we can then assume that the spectral strength 
function, without violating (2.29), is such that 

w - 2 y ( w ) =  w ; 2 ~ ( ~ o )  = 4 r l T  (2.31) 

>> wo,  where we’  = 78 is a response time characteristic of the over a region of size 
thermal bath, much shorter than the characteristic time of the central oscillator. 

Then, for times large with respect to 78, (2.30) can be approximated by 

B( t )  = 4 r 8 (  t )  (2.32) 

and inserting into (2.15) the quantum Langevin equation takes the more familiar form 
(Riseborough et a1 1985) 

io( t )  = -n:qO( t )  - 2r4,( t )  + F (  t )  (2.33) 

where 

and the autocorrelation of the stochastic force F ( t )  takes the form 

(2.34) 

(2.35) 

In this approximation the following expressions for the correlation functions 
introduced above are obtained: 

(2.36) 

(2.37) 
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3. Stochastic quantisation 

In the next section a description of the quantum Brownian oscillator in terms of 
classical random processes will be derived. As a preliminary step, in this section we 
present stochastic mechanics for pure and mixed states. 

According to Nelson’s scheme of quantisation (Nelson 1984, Guerra 1981) a particle 
in a pure quantum state, with wavefunction +(x, t ) ,  is described by a classical 
Markovian random process x ( r )  obeying a stochastic differential equation of the form 

i ( t )  = b(x, t ) +  e ( t )  (3.1) 

( e ( t ) = o  (3.2) 

( ( e ( t ) e ( t ’ ) ) =  hs ( t - t ’ )  (3.3) 

where e( t )  is a Gaussian white noise with expectations (here we take the mass m = 1) 

and the drift b(x, t )  is related to the wavefunction by 

a a 
ax ax 

b(x, t )  = + h  - In p ( x ,  t )  + h - S ( x ,  t )  (3.4) 

where 

d x ,  t )  = l $ (x ,  t)12 

S ( x ,  t )  = h Im(1n +(x, t ) ) .  

(3.5) 

(3.6) 

As an explicit example, useful for the following, let us consider the coherent states 
+,(x, t )  of an oscillator with Hamiltonian H = i ( p 2 + w 2 q 2 ) .  

It has been shown elsewhere (Guerra and Loffredo 1981, Ruggiero and Zannetti 
1982) that the stochastic process x,( t )  associated with JIu (x, t) can be written as the sum 

x u ( t ) = q u ( f ) + t ( t )  (3.7) 

where q,( t )  is the solution of the classical equations of motion 

4=P 
p = - w 2 q  

(3.8) 

with initial conditions ( q ( O ) ,  p ( 0 ) )  related to the complex label a of the coherent state 
by 

a = ( w q ( o ) + i p ( 0 ) ) / ( 2 h w ) ” ~  (3.9) 
and [ ( t )  is the stationary stochastic process associated with the ground state of the 
oscillator with the stochastic differential equation 

& t ) = - w [ ( t ) + e ( t ) .  (3.10) 

Clearly (3.10) defines a Gaussian process with zero mean and autocorrelation 
function 

The next step is to extend stochastic mechanics to impure states (Ruggiero and 
Zannetti 1983). It is convenient to use the description of the system (2.5) in terms of 
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normal modes and to introduce the coherent-state basis for each normal mode 
{t,!Iau(x, t ) } .  The density matrix associated with the canonical ensemble then takes the 
product form 

where a, is defined in (3.9) and the weight function is given by 

(3.12) 

(3.13) 

with 

c, = exp(phz,) - 1. (3.14) 

Since we know how to construct the random processes associated with each coherent 
state, the stochastic description of the density matrix (3.12) is readily obtained by 
introducing a set of random processes {x;( t ) }  of the form (3.7), one for each normal 
mode: 

x W =  q : ( t ) + 5 : ( t )  (3.15) 

where q:( t )  is the classical normal-mode coordinate and t:( t )  is a stationary random 
process obeying an equation of motion of the type (3.10) with frequency z ,  and white 
noise e,( t )  satisfying 

( O ” ( t ) )  = 0 (3.16) 

(e,( t )  e, ( t ’ ) )  = hs,S( t - t’). (3.17) 

The connection between the multidimensional stochastic process { x;( t ) }  and the 
density matrix (3.12) is obtained, assuming that the initial conditions of q ; ( t )  are 
distributed according to the weight function (3.13). 

4. Quantum Brownian oscillator 

The set of stochastic processes (3.15) derived in the previous section give a detailed 
microscopic description of the equilibrium states for the entire system. It must be 
emphasised that, although given in terms of random processes, this description is time 
reversible and energy conserving. 

The programme now is to reduce the description, by elimination of the degrees of 
freedom of the thermal reservoir, arriving at an effective stochastic process for the 
central oscillator alone. In the limit of a large reservoir, dissipation and time irreversibil- 
ity are expected to arise. 

First notice that q : ( t )  and g,(t)  in (3.15) are independent objects. Therefore the 
outcome of the reduction is expected to be a stochastic process for the central oscillator 
of the form 

x 0 ( t ) =  q 0 ( t ) + 5 0 ( t )  (4.1) 
where qo( t )  and to( t )  are themselves independent random processes obtained, respec- 
tively, by carrying out the reduction among the classical components (41) and the 
quantum components (5:) in (3.15). Furthermore, from the linearity of the system it 
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follows that xo( t ) ,  as well as its components qo( t )  and to( t ) ,  is a Gaussian process. 
Therefore all the information is contained in the mean, which in this case vanishes: 

( x o ( t ) )  = ( q o ( t ) )  = ( 5 0 ( t ) )  = 0 

SX(t) = (xo(O)xo(t ) )  

(4.2) 

and in the pair correlation functions: 

(4.3) 

related by 

Let us first consider the thermal component q O ( t ) .  Since the normal modes q5 obey 
the classical equations of motion, by the same arguments presented in § 2, it follows 
that q O ( t )  is driven by an equation of motion of the form (2.15). Keeping in mind that 
the initial values appearing in the random force (2.17) are now distributed according 
to (3.13), for the thermal correlation function we find 

1 
= - f dzm cos(zt) 

2 Iri Z d Z )  
(4.5) 

and comparing with (2.25) 

Stochastic quantisation and standard methods give the same result for the contribution 
of the thermal fluctuations. 

Next we consider the zero-temperature behaviour. In this case the entire system 
is in the ground state and, as a whole, undergoes zero-point fluctuations. The problem 
we are now addressing is the description of the fluctuations of the central oscillator 
as the degrees of freedom of the thermal reservoir are eliminated, while keeping the 
system at zero temperature. 

The stochastic process of the Brownian oscillator is related to the corresponding 
ground-state processes in the normal modes by 

5 0 ( t )  =c X O U S 5 ( f )  
U 

which yields the following expression for the correlation function: 

(4.7) 

where the contour of integration goes around the positive zeros of g(  z ) .  
As a first observation, notice that comparing with (2.27) one finds 

S,( t )  = W,(-it) (4.9) 
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namely the ground-state correlation function, obtained through stochastic quantisation, 
coincides with the Euclidean version (Schwinger function) of the corresponding time- 
ordered correlation function (Wightman function), exactly as in the case of non- 
dissipative systems (Guerra and Ruggiero 1973). 

The above result has been derived without going to the limit of a large reservoir. 
However it is clear that (4.9) will also hold as the limit of large N is taken. Therefore, 
the elimination of the degrees of freedom of the reservoir, provided the system is kept 
at zero temperature, does not introduce a mechanism for dissipation, contrary to what 
occurs at finite temperature. 

The above statement can be clarified considering the response function of the 
Brownian oscillator: 

(4.10) 

which is related to the Fourier transform of S<( t )  by 

S s ( w )  = hx’(iw) (4.11) 

where ~ ’ ( z )  is the real part of ~ ( z ) .  Again, this is the same relation which holds for 
a single particle in a pure quantum state (Ruggiero and Zannetti 1985b), where 
fluctuations are only of quantum origin and clearly not related to dissipation. The 
physical meaning of (4.1 1 )  is readily understood considering a classical oscillator of 
frequency w o ,  subjected to an external force of frequency w. This is a non-dissipative 
system, coupled to an external energy source, whose average energy per cycle I? does 
not change with time and is related to the average square displacement by 

f2 = 2Ex‘(iw) (4.12) 

where 

1 
x’(w)  =- (4.13) 

w ; - w 2  

is the real part of the response function of the undamped harmonic oscillator. 
Rewriting (4.11) as 

w S * ( w )  = 2( hw/2),y’(iw) (4.14) 

the similarity with (4.12) is evident, after replacing the average stored energy E with 
the zero-point energy hw/2. Hence, the fluctuation-response relation (4.1 1 )  is the 
signature of the non-dissipative nature of the dynamics associated with the stochastic 
process to( t ) .  We emphasise that, if this can be naturally expected for a Nelson process 
in a pure quantum state (i.e. a wavefunction), it is a remarkable result in the present 
case, where the process to( t )  is obtained through an elimination of degrees of freedom. 

The next step in the study of the random process & ( t )  is the derivation of the 
equation of motion. We already know, from the stochastic mechanics of pure states, 
that the isolated oscillator in its ground state performs a Markovian random process 
and obeys the equation of motion (3.10). From the above discussion we also know 
that, when the thermal bath is introduced, keeping the system in the ground state, the 
physical properties of the fluctuations in some sense are not changed. However we 
expect the equation of motion to be strongly modified by the thermal bath. In particular 
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we expect the bath to introduce memory effects, spoiling Markovianity, and yielding 
an equation of motion of the general form 

ds L( t  - s)&(s)  + ~ ( t )  t >  to (4.15) 

where L ( t )  is a memory kernel and T ( t )  is a random noise with zero mean and 
autocorrelation function 

( 7 ( t ) d t ' ) ) = f ( t -  t ' )  (4.16) 

to be determined. 
Since, as remarked above, the random process to( t )  is Gaussian and all information 

is contained in the correlation function Sc( t ) ,  we must extract the unknown functions 
L( t )  andf( t )  from (4.8). From (4.15) it is easy to derive the equation of motion for Sc( t): 

= -lo' ds L( t -s)Sc(s) + R ( t )  
d t  

where the quantity 

R ( t )  = ( & ( O ) T ( t ) )  

in turn obeys the equation of motion 

dR( t )  
- = - j, ds L ( s  - t ) R ( s )  -f( t ) .  

d t  

Laplace transforming, we find 

On the other hand, from (4.8) the Laplace transform of S , ( t )  is given by 

h 1 
S J Z )  =- - 

2R(z) z + R ( z )  

after rewriting (2.6) as 

g( z) = z* - a'( z) 

with 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

N E :  
R*(z)=o;+ c 2. (4.24) 

n = ] Z  - w n  

Comparing (4.20) and (4.22) one can identify 

i( z) = R( z) 

E(Z)+S,(O) = h/2R(z) 

(4.25) 

(4.26) 

and from the latter relation the Laplace transform of the noise autocorrelation function 
is given by 

(4.27) f(z) = (S,(O) - h/2R(z))(z -R( -z))  + R ( 0 ) .  
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Equations (4.25) and (4.27) give the dependence on the thermal bath of both the 
memory kernel and the random noise which, in the general case, are quite complicated 
functions. Furthermore, one can see that the dissipative finite-temperature kernel B( t )  
and the non-dissipative zero-termperature kernel L( t )  are related by 

Z2(z) = w i +  iz&iz) - B ( O )  (4.28) 

using (4.24) and the relation 

(4.29) 

In order to gain some insight into the result, let us first recover the Markovian limit 
of the free oscillator. Setting all the coupling constants to zero in (4.24) and recalling 
that in this case S,(O) = fi/2wo and R(0)  = h/2, from (4.25) and (4.27) it follows that 

L( t - t ’ )  = wo6( t - t ’ )  

f (  t - t ’ )  = ha( t - t’) .  
(4.30) 

A less straightforward Markovian limit is obtained, neglecting the z dependence 
of the generalised frequency R(z)  in (4.24) and obtaining the renormalised frequency 

(4.31) 

which coincides with (2.34) in the limit of a large reservoir. In this case one obtains 
the exponentially decaying correlation function 

2h 
0, 

Sf( t )  = - exp( -a, t ) .  (4.32) 

This limit is more interesting since Markovian behaviour is recovered without 
throwing away the thermal bath. The physical meaning is more clearly understood in 
the limit of a large reservoir, where (4.31) coincides with (2.34) and (4.32) is obtained 
from the exact expression of the correlation function: 

(4.33) 

by taking the weak coupling limit (R,  >> r). 
In other words, if the coupling is weak enough, the only effect of the thermal 

reservoir is to renormalise the frequency of the oscillator, whose ground state is then 
described by a wavefunction, as for the free oscillator, yielding Markovian behaviour 
in the framework of stochastic mechanics. 

This is not in contrast with the absence of a Markovian limit at T = 0 in the usual 
quantum-mechanical treatment of the Brownian oscillator (Ullersma 1966), in which 
case the inequality hT<c kT must be satisfied for Markovianity. In order to understand 
the difference between the two cases it is enough to consider the limit of vanishing 
coupling with the thermal bath (r=O): stochastic mechanics then yields the Nelson 
Markov process for the ground state of the free oscillator with an exponentially decaying 
correlation function, while in quantum mechanics one obtains an oscillating correlation 
function. 
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As a last comment, carrying out the integral (4.33) one obtains 

a 
2 7TR 

St( t )  = - Im{exp[i(T+iR)t] Ei[-i(T + iR)t]  

+ exp[ -i(T + in) t ]  Ei[i(T + in) t ] }  (4.34) 

where Ei( ) is the exponential integral function and R is defined by f l f  = CL2+r'. This 
expression yields, as should be expected, the Euclidean version of the long-time tail 

(4.35) 

previously found by other authors (Grabert et a1 1984, Haake and Reibold 1985, 
Riseborough et a1 1985). 

In conclusion we have derived the exact random process x,,( t )  performed by the 
Brownian oscillator when the thermal bath is described by the microscopic model of 
Ullersma. The additive structure (4.1) of this process allows us to identify the thermal 
component qo( t )  and the quantum component to( t )  of the fluctuations. The thermal 
component prevails at high temperature and carries the dissipative effect of the thermal 
bath. The quantum component prevails at low temperature and displays the interesting 
features arising at T = 0, when the interaction with the bath cannot produce thermal 
fluctuations. The drastic change in the nature of the fluctuations, as the temperature 
is lowered, is clearly illustrated by the fact that the Brownian oscillator attempts to 
behave, at zero temperature, as closely as possible to a particle in a pure quantum 
state by sharing overall properties characteristic of quantum fluctuations. Clearly the 
similarity cannot be complete, since the bath also plays a role at zero temperature, 
producing non-Markovian behaviour. This has been investigated in detail by deriving 
the equation of motion of the zero-temperature process, which is a quite interesting 
result in the context of stochastic mechanics since it provides the first example of a 
non-Markovian Nelson process. 

References 

Caldeira A 0 and Leggett A J 1983 Ann. Phys., N Y  149 374 
Dekker H 1981 Phys. Rep. 80 1 
Eckhardt W 1987 Physica 141A 81 
Ford G W and Kac M 1987 J.  Star. Phjs. 46 803 
Ford G W, Kac M and Mazur P 1965 J.  Math. Phys. 6 504 
Graben H, Schramm P and lngold G 1988 Quantum Brownian Motion: the Functional Integral Approach 

Grabert H, Weiss U and Talkner P 1984 Z. P h p .  B 55 87 
Guerra F 1981 Phys. Rep. 77 263 
Guerra F and Lofiredo M I 1981 Lett. huovo  Cimenro 30 81 
Guerra F and Ruggiero P 1973 Phys. Rev. Lett. 31 1022 
Haake F and Reibold R 1985 Phys. Rec. A 32 2462 
Nelson E 1984 Quantum N u m a r i o n s  (Princeton, NJ: Princeton University Press) 
Riseborough P S, Hanggi P and Weiss U 1985 Phys. Rev. A 31 471 
Ruggiero P and Zannetti M 1982 Phys. Ret .  Lett. 48 963 
- 1983 Phys. Rev. A 28 987 
- 1985a Rio. Nuooo Cimento 8 1 
~ 1985b J .  Phys. A :  Moth. Gen.  18 L513 
Ullersma P 1966 Physica 32 27 

Phys. Rep. to appear 


